Пределы
Пределы — одни из самых трудных сущностей в математике для понимания. Сложно объяснить просто, что такое предел, поэтому чаще всего этого никто и не делает.
И тем более, мало к то из преподавателей может привести пример из жизни, когда пределы все-таки могут пригодиться. Но мы попытаемся объяснить так, чтобы было и понятно и несложно и по сути. Как обычно «на пальцах».
Что такое пределы простыми словами
Наверное самое наглядное, что можно вспомнить из истории, это знаменитый парадокс Зенона «Ахиллес и черепаха». Зенон был философом, а не математиком, поэтому мог вполне свободно упражняться в остроумии не заботясь о доказательствах.
Ахиллес и черепаха бегут на перегонки. Черепаха начинает первой, человек догоняет. Ахиллес бежит быстрее, но когда он пробегает 100 шагов, черепаха все рано проползает один. Еще 100 шагов и еще один. Таким образом Ахиллес приближается к черепахе но и она чуть-чуть отдаляется от него. Зенон делает вывод, что Ахиллес будет бесконечно к ней приближаться, но никогда не догонит черепаху!
В этой истории важно не то, что на самом деле она не реальна, а ее «математический смысл». Человек приближается к черепахе но никогда ее не настигает. То есть некий предел (черепаха) к которому стремится Ахиллес.
Говоря простым языком, предел это такое значение, которое нельзя достичь, но можно бесконечно близко к нему приблизится.
То есть, в пределе определенного промежутка времени Ахиллес действительно не догонит черепаху (времени не хватит), но приблизится к ней на бесконечно малое расстояние.
Что такое пределы в математике
Стоит сразу сказать, что определение пределов больше чем одно, потому, что они бывают разные. Есть придел последовательности, а есть предел функции.
Давайте разделим число 10 пополам:
10/2=5, и еще раз, 5/2=2,5 и еще…
Это последовательность n/2: 10…2,5…1,25…
Если делать это 20 раз получится вот такое значение: 0,000019
А если сделать 100 раз, то вот такое: 0,000000000000000000000000000016
Если делить пополам бесконечно, результат будет уменьшатся, в реальной жизни, это будет уже фактически ноль, но в математике, все еще не ноль… Предел этой последовательности будет стремиться к нолю.
Если взять другу последовательность, например n+1. 2…3…4…5… и снова устремимся в бесконечность. Предел этого множества тоже будет стремится к бесконечности.
Еще один пример
Бросаем монетку. Может выпасть «орел», а может и «решка». Теория вероятности утверждает, что шансы всегда 50/50, то есть вероятность «орла» — 1/2=0,5.
- Если сделать 10 бросков, может выпасть не 5 и 5, а, например, 4 и 6. То есть 4 «орла» и 6 «решек» вероятность — 0,4
- А если 100 бросков, 48/52 — 0,48
- А если 1000 — 499/501 — 0,499
- 10 000 — 4998/5002 — 0,4998
Каждый раз, значение реальной вероятности, приближается к расчетным 0,5. Чтобы получить вероятность ровно 0,5 нужно подбросить монетку бесконечное количество раз.
То есть, при условии, что количество бросков стремится к бесконечности предел предел будет равен 0,5.
Это именно та бесконечность из матанализа о которой было сказано в статьях об интегралах и делении на ноль. Это не какое-то определенное число — это понятие.
Предел последовательности
Предел последовательности — это пространство которое содержит все все элементы последовательности начиная с какого-то значения.
А простыми словами, предел последовательности, простыми словами, это такая «область» куда попадают все значения после определенного порога (в нашем случае – А). На изображении ниже она условно показана синей полоской.
Начиная с 13 значения все последующие находятся так близко друг к другу, что попадают в этот предел. Хотя, конечно не равны ему, а «колеблются» то влево то вправо на предельно малую величину ε. На картинке +ε и -ε. И почти все члены последовательности за исключением первых 13 находятся в интервале (s-ε; s+ε).
ε — это произвольное положительное число.
Можно заметить, что при продолжении вверх последовательности ее значения все равно будут оставаться в пределах «синей полосы».
Можно сказать и так:
Предел числовой последовательности, это число (s на графике) в окрестности которого попадает бесконечно много значений. При этом вне предела, количество значений явно конечно.
Чтобы было еще понятнее: предел последовательности это значение (точка А) выше которого все будет попадать в область не больше s+ε и s-ε. Бесконечное количество таких значений будет «лежать» внутри синей полоски.
Математическим языком можно записать так: s-ε < xn < s+ε или|xn— s| < ε
То есть, все точки будут находится в полосе шириной 2ε на сигму правее и на сигму левее. Чем дальше вверх, тем ближе значения будут к s, но не «выпадут» из + или — сигма. Определение предела в математике не то чтобы сложно, оно контринтуитивно. Приходится подключать фантазию, чтобы понять, что на самом деле все просто и понятно.
Все еще достаточно «математически», попробуем человеческим языком:
Самое понятное объяснение таково. Предел последовательности, это такая величина в которую «почти упираются» все ее значения. Некий виртуальный потолок, до которого никак не допрыгнуть, хотя всегда остается совсем чуть-чуть.
Вот, например последовательность n/n+1. Тут видно, что какое значение «n» не подставляй, знаменатель всегда будет на 1 больше. Возьмем «единицу» 1/1+1=0,5, возьмем «десятку» 10/10+1=0,909, а если «двадцатку» — 0,952, а если «сотню» — 0,990099. какое бы число мы не подставляли, значение всегда будет стремится к единице, но никогда не будет равно единице.
Предел функции простым языком
Фактически это то же самое. За исключением того, что последовательность чисел имеет разрывы, а функция — нет, она не прерывна. Но принципиально это не меняет сути дела.
Предел функции простыми словами объяснить также просто. Предел в какой-то произвольной точке — это величина к которой значение функции приближается. Например, f(x)=2x, а х→0 (икс стремится к нулю).
В этом случае предел функции будет равен lim 2x=0. Или в случае если х→2 то предел равен lim 2x=4. Пока все просто. Вот только зачем вычислять пределы, если можно просто выбросить «lim» и расчеты останутся те ми же?….
Зачем нужны пределы
Пределы как раз и нужны тогда, когда мы имеем дело с бесконечностью. Например, бесконечно большими или бесконечно малыми значениями.
Непонятно, что такое «бесконечно большое» или «бесконечно долго», это не какое-то определенное число. С бесконечно малыми значениями та же ситуация, это не «ноль» но как-то очень близко к нему. Тут и выручают пределы.
Вот какой график получится, если взять функцию y=x2-4/x-2
В точке х=2 — пусто. Потому, что получается 0/0, то есть неопределенность. Но стоит вместо 2 подставить 1,9999999999(9) или 2,000000001(1). Значения бесконечно близкие к 2, но не «два», как график превратится в прямую.
В этом случае речь идет о пределе функции при «икс» стремящемуся к двум, функция стремится к 4.
lim x2-4/x-2
при х→2 lim x2-4/x-2→4
Такой своеобразный «трюк» в расчетах с заменой знака равенства на стрелочку.
Нет, не совсем. Когда речь идет о пределах, имеется в виду процесс, не важно функция это или множество, но предел описывает процесс в динамике. Тогда как знак «равно» означает статическое состояние.
x=1 и x→1, это совсем не одно и то же.
Примеры из жизни
Зачем все это нужно где применяется пределы в реальных расчетах?
Простое объяснение пределов невозможно, если не привести наглядный пример. Но только где его взять? Существует ли какой-то физический смысл пределов? Не точный аналог но что-то похожее есть.
Можно провести простой эксперимент, взять, например, спичку. Или что-угодно, чего не жалко. Начинаем пытаться сломать спичку, сначала одно усилие, потом чуть больше и еще больше. В один из моментов спичка треснет пополам.
Поздравляем, вы достигли предела прочности. Можно повторить эксперимент с другими спичками и установить, значение при котором спичка ломается.
Что тут общего с пределами из математики, кроме названия.
Есть множество значений силы до предела прочности и оно ограничено, и множество значений после предела прочности, их неограниченное множество. Ведь спичка уже сломана, любое усилие выше предела прочности будет ломать новую и новую спичку. Точно так же как и с пределом функции или множества.
Все, что лежит за пределом, уже не имеет практического значения — спичка не устоит.
Еще один пример, это «практический потолок» летательного аппарата. Это максимальная высота на которую может «взобраться» самолет, чтобы подняться выше будет уже не хватать подъемной силы. Хотя на есть еще и понятие «динамический потолок» — это высота на которую можно подняться хорошенько разогнавшись.
Но, выскочив на эту высоту, через некоторое время самолет все равно опустится на свой «потолок».
Посмотрите на картинку ниже, это наглядный пример такого явления как резонанс.

Колебание моста из-за резонанса
Мост так раскачивается из-за того, что собственная частота колебания совпадает с той частотой с которой его раскачивает ветер, амплитуда колебаний постоянно возрастает и мост разрушается. В этом случае амплитуда стремится к бесконечности, так как в знаменателе формулы находится выражение w0-w (собственная частота колебаний минус вынужденная частота), а так как обе w равны, получается то самое деление на ноль, а значит амплитуда → ∞.
Самое понятное объяснений пределов в реальности, с которым может столкнуться каждый — это сложные банковские проценты по кредиту. И если вы не умеете рассчитывать сложны проценты, не берите кредит. Для тех, кто силен в матанализе совет будет не лишним.
Также может понадобится рассчитать предельную стоимость товара, зная зависимость (функцию) цены от объема продаж или предельный объем производства или много еще чего.
Самый наглядный пример, возможно, это предел в маркетинге. Вот зависимость стоимости клика от количества кликов в контекстной рекламе.
Очевидно, что предел этой функции стремится к 30 кликам, если стоимость клика стремится к бесконечности. Даже без знания матанализа становится понятно, даже при повышении ставки за клик до $4 или $5 долларов, нельзя будет добиться большего количества кликов, чем 30. А раз так, то зачем повышать ставки?
И все же, в повседневной жизни обыватель редко встречается с таким понятием как предел функции или последовательности. Поэтому и так сложно понять и принять абстрактные математические формулировки.
Но, если постараться, математика может открыть новые грани реальности, по крайней мере, все это уже не будет казаться таким скучным и непонятным.
У тебя проблемы с бакалаврами? Что они с тобой сделали?
Ну, «умеешь решать, но не понимаешь, что решаешь» — это уровень мышления егэшников-бакалавров. Кто учился в советской школе, таким никогда не страдал.
Спасибо! Какое интересное занятие — пытаться понять смысл того, что ты в общем решать умеешь. Решать умеешь, а зачем это практически — не понимаешь. Но после этой статьи не понимаешь уже меньше. Интересно, сколько раз нужно эту статью прочитать, чтобы достичь предела понимания? )
Отличная статья! Вот бы весь матан так описали для простых смертных. Огромное спасибо
К сожалению, пока такой статьи не будет. Война. Может когда-нибудь после войны.
автор замечательный учитель. Прочитал статью про интегралы, хотелось бы прочитать статью про дифференциалы.
Общее правило : если в числителе и знаменателе находятся многочлены, и имеется неопределенность вида
Хорошее объяснение. Можно было бы закончить статью тем что предел заканчивает мучения Ахиллеса, ему достаточно приблизиться на длину своей руки, после этого предела черепахе уже не уйти)))
Рекомендация: Если в пределе (практически любого типа) можно вынести число за скобку, то всегда это делаем. Более того, такие числа целесообразно выносить за значок предела. Зачем? Да просто чтобы они не мешались под ногами. Главное, потом эти числа не потерять по ходу решения.
Существует также геометрическое объяснение определения предела, но здесь мы не будем лезть в теорию, так как нас больше интересует практическая, нежели теоретическая сторона вопроса. Когда мы говорим, что