Способы умножения

Умножение чисел — это очень простая операция, фактически, то же самое, что и суммирование. Конечно, пока сами числа не большие.

2х3=2+2+2 (три раза по два) или 24х6=24+24+24+24+24+24 (шесть раз по 24)

То есть, знать таблицу умножения вовсе не обязательно? Да, но с ней удобнее. Например, в случае умножения чисел 235х4596, число 4596 придется сложить 235 раз! Или наоборот, 235 сложить 4596 раз…

Слово «сложить» употреблено не зря. Вот простой способ в этом убедится. Нужно взять листок бумаги сложить его 5 раз в одном направлении, а потом 3 раза в другом. Получится действие 5х3. Считаем получившиеся от сгибания прямоугольники — их 15. Это то же самое, если бы мы взяли 3 полоски ткани (или чего угодно) длинной 5 и сложили вместе.

Как ни крути, а получается — 15!

Необычные способы умножения

В школе нас учат использовать два инструмента: таблицу Пифагора (считается что таблицу умножения придумал именно этот греческий математик) и умножению «в столбик». Это действительно самые эффективные инструменты? Кроме них есть еще несколько интересных способов умножать числа. Может какой-то из них будет проще и учить таблицу не придется?

По-крестьянски

Использовался для определения площади земельного участка. Например, имеем поле длинной 6 и шириной 5.

Чтобы узнать, сколько будет 6х5 делаем следующее: левое число делим на 2, а правое умножаем на 2, пока от левого числа не останется единица.

4 | 5

   4/2=2 | 5*2=10

     2/2=1 | 10*2=20

4х5=20, все правильно, так же как и 1х20=20

Что происходит при таком способе? Мы разделяем прямоугольник пополам, пока его ширина не станет равняться единице. Делить на два не сложно.




Крестьянский (русский) способ умножение

Вот только что будет, если одна из сторон не будет делиться на 2? Будет долгий и не такой уж простой процесс.

6 | 2 → 12

6/2=3 | 2*2=4 → 12

3/2=1,5 | 4*2=8 → 12   

1,5/2=0,75 | 8*2=16 → 12 

Если в левой части четное число — эту строку не считаем, если значение меньше единицы — тоже отбрасываем, остается вторая и третья строка, а это 8+4=12. А если представить, что умножит нужно 173 на 735? Нет, такой способ умножения не самый легкий и простой.

Можно делить/умножать и на 3, но тогда нужно знать таблицу умножения «на три», тогда уж и 5 и 7 и… Да, удобнее выучить ее всю. Также, если будет необходимо перемножить большие числа, процесс будет очень длинным.

Восточный способ

То ли китайский, то ли японский способ умножения, при помощи линий, он же «графический». Его суть состоит в том, что цифры первого числа изображаются в виде параллельных линий, а второго — перпендикулярных им. Количество пересечений и является результатом умножения. То есть, здесь знать таблицу умножения не нужно, достаточно уметь суммировать. Например, так:

2 х 3 и даже 15 х 12

Японский способ умножения

Японский или китайский метод, суть не меняется

 

Как работает умножение линиями?

Первое число (фиолетовым цветом на картинке) рисуется так: Снизу вверх, слева на право, сначала тысячи, потом сотни, десятки, единицы. Второе число (голубым цветом на картинке) рисуется наоборот: сверху-вниз.

В первом примере все просто 2 и 3. Две линии пересекают 3 другие, получается 6 точек. Во втором, сначала рисуем 15 — единицу (один десяток), потом пять линий изображающих 5 (пять единиц). Потом (12) перпендикулярно ей вторую единицу и 2 линии.

Далее нужно посчитать пересечения, но уже в обратном направлении. Начинать справа. В примере  это 10, 7 и 1. Результат складывается в столбик:

10

7

1

180

Если сравнить с традиционным «столбиком», сперва может показаться, что графический метод проще.

Простой способ умножения

Умножение линиями

А что делать, если нужно умножить 10 на 12? Как изобразить «ноль» линией? Никак, он участия не принимает, можно нарисовать его пунктиром и пересечение не считать, все просто…

Но вот уже случае 853х951 рисовать и считать точки придется очень много. Столбик опять окажется удобнее. Каждый сам может попробовать перемножить 9878 и 8794 «японским методом» и засечь необходимое время.

Китайский способ умножения

Японский метод с нулем

Эта методика не универсальна, совсем не подходит, когда числа достаточно велики, зато ее очень просто объяснить маленьким детям, которые еще не знают таблицу умножения.

Жалюзи

Встречается еще и название «решетки» и индийский метод умножения. Поверить в индийское происхождение проще всего, если вспомнить, кто вообще придумывал эту вашу математику в древности. Итак, чтобы умножить два числа, нужно построить матрицу (если угодно — таблицу, мы же пытаемся быть проще).

Умножаем 45 на 82

Так как в каждом числе по 2 цифры, таблица будет 2х2. Каждую ячейку нежно перечеркнуть по диагонали. Далее записываем слева-на-право, и сверху-вниз цифры 4, 5, 8, 2 напротив каждой ячейки. Начинаем умножать цифры находящиеся напротив друг-друга. 4 на 8, 5 на 8, 4 на 2 и 5 на 2.

Ну вот опять нужна таблица умножения, иначе придется долго складывать числа.

Индийский способ умножения

Результаты записываются в ячейки хитрым способом, десятки над диагональю, а единицы — под ней. Но, если значение меньше 10 (то есть это одна, а не две цифры), то вместо десятки верху пишется «ноль», как при умножении 4х5. Но можно оставить поле пустым.

Теперь, чтобы узнать результат, нужно посчитать сумму в каждой диагонали, как показано на картинке.  Сверху-вниз:

              3

0+2+4=6

     8+1=9

              0

В результате получаем 3690.

Тоже достаточно просто, только с небольшими значениями, для умножения трехзначных чисел придется рисовать таблицу размером 3х3=9 ячеек.

Какой метод умнения лучше?

Если перепробовать все способы умножения чисел, становится видно, что все представленные альтернативные методы умножения — это все варианты знакомого «столбика». Также операции разбиваются на более мелкие: сначала умножение, потом — суммирование.

Только в так называемом китайском/японском способе умножение как таковое не используется (вместо него пересечение линий) и в этом варианте действительно можно обойтись без таблицы умножения, но придется много рисовать, что повышает вероятность совершить ошибку при пересчете точек пересечения.

Есть мнение, что популярность умножения в столбик вызвана именно компактностью записи. Так на умножение требуется меньше бумаги, меньше чернил (да, чернила раньше использовались и тоже стоили денег) и соответственно времени.

Знать нетрадиционные методики интересно и даже полезно, но школьная таблица умножения и столбик, все же быстрее и удобнее. Если, конечно, не считать калькулятор.

Читайте также:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *