Управление полетом ракеты

Дальше речь пойдет именно о системе управления полетом ракеты,  а точнее об органах управления, а не о системах наведения (это отдельная и интересная тема).

Как управлять полетом ракеты

Ракеты были изобретены давным давно. 200 лет до нашей эры в Китае вместе с изобретение пороха. Китайцы, конечно же, применяли ракеты как оружие, но в основном при осаде городов. Попасть куда-либо древними китайскими ракетами было сложно, разве что стрелять по большому городу. Первые ракеты никак не управлялись, можно было только задать направление и учесть ветер.

Для стабилизации (не управления) полета использовалось тот же принцип, что и для стрелы лука — оперение или стабилизаторы. Самое интересное началось тогда, когда ракеты стали управляемыми, а для этого они должны были «научится» управлять полетом. Фактически есть только два подхода: использование аэродинамических сил и газодинамики.

Аэродинамические рули

Если сделать стабилизатор подвижным, получится аэродинамический руль. Стабилизаторы похожи на рули, но с их помощью нельзя управлять полетом, просто потому, что они неподвижны. Изменения положения плоскости руля создает на нем подземную силу, которая и меняет траекторию движения. Просто и эффективно, но есть одно но.

Ракета для C-175 Нева

Ракета ЗРК C-175 «Нева». Хорошо видно рулевые поверхности

Боевым зенитным ракетам, например, нужно быть верткими и быстрыми, чтобы во-первых догнать самолет, а во-вторых попасть в него, когда он начнет уклонятся от атаки. Чтобы хорошо маневрировать можно просто увеличить площадь оперения (или количество «перьев»), тогда оно будет создавать большую силу, ракета будет поворачивать быстрее. Но чем больше стабилизатор, тем больше аэродинамическое сопротивления — меньше скорость, а при этом еще и больше расход топлива, что означает меньшую дальность.

И даже для не боевых ракет, большие стабилизаторы это и хорошо и плохо одновременно.

Решетчатые рули

Такое оперение обладает преимуществом на больших углах атаки (когда ракета сильно разворачивается относительно первоначального направления движения) из-за отсутствия «срыва потока» , более компактные и прочные, их легче складывать. Управляется лучше, но сопротивление никуда не девается. Интересно, что используется такое устройство не только военными.




р-77 решетчатый стабилизатор

Советско-Российская ракета «воздух-воздух» P-77

Стоит отметить факт, что такие стабилизаторы были созданы в СССР в 50-60-х годах ХХ века в инициативном порядке. История создания решетчатых рулей  наглядно показывает, как сложно преодолеть инертность мышления. По воспоминаниям разработчиков, основным аргументов противников внедрения инновационной техники было то, что «на западе таких крыльев нет».

Спускаемый аппарат Союз, решетчатые рули

Спускаемый аппарат Союз

Но теперь есть и «на западе» тоже. Вот, например, знаменитый Фалькон 9 от Илона Маска.

Falcon 9, решетчатые рули

Ракета Falcon 9

Управляемый вектор тяги

А что если убрать рули вовсе? Сопротивление уменьшится, но управление потеряем. Как в таком случае маневрировать? Есть решение — управлять не «вредными» аэродинамическими поверхностями, а непосредственно тягой (струей газа из сопла). Можно поворачивать сопло, а то и всю камеру сгорания механически (что сложно и дорого, но это самый распространенный способ), можно использовать специальные жаропрочные плоскости-дефлекторы или вовсе добавить в конструкцию дополнительные двигатели.

Thaad

ПРО «Thaad». У ракеты нет никаких рулей

А можно сделать сопло неподвижным и отклонять и саму струю газа, впрыскивая через форсунки в сопле жидкость или газ которые будут вызывать появление скачков уплотнения меняющих направление струи.

Все эти способы чаще используются в больших ракетах, с большим размером сопла. Например, на гражданских ракетоносителях или на межконтинентальных баллистических ракетах.

Спейс Шаттл, отклоняемый вектор тяги

В американском Шаттле отклонялось все сопло сразу

Газодинамический пояс

Для некоторых типов ракет маневренность — критически важный показатель. Аэродинамические рули не могут одинаково хорошо работать на малой высоте и на большой. Что касается отклонения вектора тяги, то он тоже не гарантирует «быстрой реакции», та как сопло двигателя находится далеко от центра масс. Но решение есть.

Сотни маленьких сопел на ракете — двигатели поперечного управления. Или так называемых газодинамический пояс, способный очень быстро разворачивать ракету почти на месте и не созидающий аэродинамического сопротивления, пока это не станет действительно нужно. Располагаются двигатели практически в центре масс корпуса (там где он будет когда ракета выработает большую часть топлива) и включаются на конечном участке траектории, чтобы наверняка поразить цель.

Ракета для РСЗО Ольха, импульсные двигатели

Ракета для РСЗО Ольха. Импульсные двигатели газодинамического пояса

Иногда инженерам приходится объединять принципы управления находя компромиссы. Французская зенитная ракета Aster использует и аэродинамические рули и управление вектором тяги, названную pif-paf*, может маневрировать с огромной перегрузкой до 60g и уничтожать не только самолеты и вертолеты, где маневренность ограничивается пилотами (человек может пережить перегрузку в 9 g и то кратковременную) но и своих родственников — ракеты.

Ракета Астер 30

Ракета Aster-30. Черная часть — разгонная первая ступень

*PIF (Pilotage Intertiel en Force) + PAF (Pilotage Aeronautique en Force) — инерционное управление+аэродинамическое управление.

Поделиться:

Читайте также:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *